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Abstract The rising costs and social concerns over fossil
fuels have resulted in increased interest in and opportunities
for biofuels. Biomass in the form of coarse woody residues
remaining after traditional timber harvest in the southeast-
ern USA is a potentially significant source of biomass for
bioenergy. Questions remain regarding whether the removal
of this material would constitute a sustainable silvicultural
practice given the potential impact on soil nutrient cycling
and other ecosystem functions. Our objective is to review
existing studies to estimate quantities of residual materials
on southern pine forests that may be available, potential
nutrient removals, and potential replacement with fertilizer.
Regionally, it is estimated that 32 million Mg year−1 of dry
harvest residues may be available as a feedstock. At the
stand level, between 50 and 85 Mg ha−1 of material is left
on site after typical stem-only harvests, of which half could
be removed using chippers at the landing. Based on these
estimates, increase in midrotation fertilization rates of 45%
to 60% may be needed on some sites to fully replace the
nutrients from harvesting residues removed for bioenergy.
Field experiments suggest that residue removals do not
degrade forest productivity in many cases, but more data
are needed to assess the effects of frequent removals (i.e.,

from short-rotation systems) over longer periods and
identify sites that may be particularly sensitive to the
practice. A benefit of developing markets for previously
nonmerchantable materials may create incentives for
improved forest management by landowners.

Keywords Harvest slash . Nutrient removal . Forest stands .

Forest soils . Southern yellow pine

Abbreviations
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Introduction

Harvesting operations in intensively managed pine planta-
tions often leave considerable amounts of traditionally
nonmerchantable residues (e.g., branches, foliage, noncrop
species) on site. More intensive utilization of these
materials as a source of biofuels is being considered in
response to rising costs and availability issues surrounding
the use of nonrenewable fossil fuels; more complete
utilization and markets could also serve as incentives to
reduce greenhouse gas emissions to the atmosphere (or
bioenergy) [15, 36]. Among the advantages of biofuels and
other bioenergy is that they are considered a carbon-neutral
source of energy since they reflect carbon recently removed
from the atmosphere so, unlike the case with fossil fuels, no
new carbon is introduced to the atmosphere [20, 63]. This is
particularly attractive when using a waste product such as
residues from traditional forest operations, especially since
many are questioning the feasibility of other bioenergy
from crops such as corn (Zea mays L.) [16, 50]. It has been
estimated that recovering 70% of harvest residues could
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offset 17.6 million tons of carbon from fossil fuels in the
USA or about 3% of the total US emissions for electricity
in 1997 [21].

There is a wealth of prior work concerning the use of
harvest residues for energy, particularly in the early 1980s
[37]. Presently, biomass provides a considerable proportion
of the energy used in some regions of the world [52]. In the
past, bioenergy has generally been considered a less
attractive energy option for more developed countries due
to the low costs of fossil fuels. However, technologies for
energy conversion have progressed significantly, and fuel
costs have risen to the point that many of the previous
assumptions about the economic viability of bioenergy may
no longer be limiting.

Questions have been raised about potential effects of
increased utilization of harvest residues and other forest
biomass on sustainable forest productivity [41]. Today,
timber-harvesting operations in pine plantations of the
southeastern USA are typically highly mechanized systems
that either transport the whole tree to the deck or remove
the top at the stump. State best management practices often
recommend redistributing nonmerchantable residues across
the site to mitigate potential impacts on site nutrient
removal and soil water retention, physical properties, and
erosion that may affect future forest productivity [12, 56]. It
is not clear, however, how more intensive residue removal
influences these factors and subsequent productivity across
a range of sites.

The objectives of this review are to (1) synthesize data
on the quantities of harvest residues generated in pine
plantations in the southeastern USA; (2) summarize the
quantities of nutrients associated with intensive residue
removal, the use of fertilizer to replace nutrient losses, and
other mitigation practices; (3) review potential effects of
residue removal on sustainable site productivity; and (4)
identify knowledge gaps concerning potential impacts and
management mitigation options.

Quantities of Residues in Managed Pine Plantations

There are 90 million hectares of forest in the southern USA,
of which 13–20 million hectares are considered intensively
managed. Annually, 2.2 million hectares are harvested
(clear-cut), and 0.5 million hectares are fertilized [9, 17,
71]. It is estimated that forest residues could provide 5.7×
107 dry Mg year−1 of material available nationally and 3.2×
107Mg year−1 regionally [44] (Table 1). Of the forestry/
agricultural feedstock sources, forest residues represent
approximately 13% of potential biomass nationally and
22% of potential biomass in the South. Milbrant [44]
provides detailed data regarding biomass resource avail-
ability in the USA.

At the stand level, 50 to 85 Mg ha−1 of dry weight
biomass (comprised of foliage, branches, and forest floor
materials) may be left on site after typical stem-only
harvesting on pine plantations in the southeastern USA
depending on the age of the stand and the harvest practices
employed (Table 2). The majority of this material consists
of branches from the crop species and nonmerchantable
species but also includes foliage and materials from the
previous forest floor. Although the complete recovery of
this material is probably neither possible nor desirable, it
still represents a significant amount of material. While
raking systems exist, simultaneous harvesting is the most
efficient manner to collect this material as it requires no
specialized equipment and less energy and results in less
trafficking. In a recent field trial where whole-tree harvest-
ing was employed, about 8 to 40 Mg ha−1 of residues was
collected for use as biomass fuel using a conventional
harvesting system and additional chippers at the logging
deck [73]. This amount of biomass compares favorably to
other forest types. A mature mixed Appalachian hardwood
stand may yield 20 to 35 Mg ha−1 of residues following a
conventional stem-only harvest [42], whereas aspen (Pop-
ulus tremuloides Mischx.) stands in Quebec may yield
21 Mg ha−1 [2]. However, in Scandinavian Scots pine
(Pinus sylvestris L.) or spruce (Picea spp.) stands where
residues are harvested, only 5 Mg ha−1 may be collected
[59].

Quantities of Nutrients Removed

As with biomass, nutrient removals also depend on stand
age and harvesting practices but are more heavily influ-
enced by tree species and tree components (e.g., branch vs.
foliage). Few detailed inventories of nutrient distributions
for the various tree components of southern pine species are
available [7, 65, 66]. In general, foliage and the forest floor
contain a higher quantity of nutrients than other woody
components (Table 3). Loblolly pine (Pinus taeda L.)
allocates more biomass to branches and stem wood while
slash pine allocates slightly more to bark and foliage [34]. It
is difficult to draw inferences without knowing the specific

Table 1 Estimated quantities of agricultural and forestry feedstock
sources in the USA and southern USA

Source National South
Mgdry year

−1 (millions)

Agricultural crops 157 27

Dedicated crops 145 43

Forest residues 57 32

Mill residues 80 42
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proportion of foliage, branches, and other materials. As a
first approximation, the weighted composite in Table 3
could be used to estimate the proportion of residue biomass
and nutrients. Assuming these values, removals would be
2.5–6.7 kg N Mg−1 of dry material, 0.2–0.5 kg P Mg−1 P,
0.8–2.7 kg K Mg−1, and 2.1–4.6 kg Ca Mg−1 under that
assumption. As an example, if 30-Mg residues are removed
from a 19-year-old plantation, nutrient removals may be as high
as 200 kg N ha−1 and 16 kg P ha−1 (Fig. 1), 66 kg K ha−1, and
74 kg Ca ha−1. Pye and Vitousek [58] similarly found that
residues in windrows of loblolly pine plantations on a
Piedmont site contained 254 kg N ha−1 and 61 kg P ha−1.

Quantities of Fertilizer Required to Offset Losses

The expense of manufacturing nitrogen and phosphorus
fertilizers is high relative to other nutrients, which have com-
paratively negligible application rates and costs [26, 45, 47].
Common fertilizer rates for southern pine stands in the USA
are 28–56 kg P ha−1 at stand establishment (depending on P
limitations), and 170–225 kg N ha−1 and 28 kg P ha−1 were
applied within the first 8 years [18]. The benefits of
midrotation applications of N last approximately 8–10 years

at which point further fertilization may be warranted to
maximize stand production. However, only 30% to 50%
of applied fertilizers are generally utilized by crop trees
[25].

Based on the data from Table 2, in order to fully replace
N removed per our example (30-Mg residues from a 19-
year-old plantation), it would require an additional 45% to
60% over the commonly applied, midrotation fertilization
rates, and up to a 28% increase in P rates to replace the N
and P removed for biofuel. However, given that nutrients
are released by the materials that remain, the complete
replacement of nutrients may not be immediately or
completely necessary. For instance, 12% of N was released
after 8 years of decay in radiata pine (Pinus radiata D.
Don.) plantations in Australia [23].

It is ultimately difficult to predict the specific fertiliza-
tion requirements due to factors such as site quality and
crop genetics [35, 43]. Areas with high nutrient availability
generally have rapid growth and nutrient turnover but also
higher nutrient exports [8]. These more productive sites are
generally thought to be more resilient to harvesting
disturbance than less productive sites [4, 61, 64], at least
from a fertility standpoint [13]. Finally, the variability in
nutritional demands between species, as well as the

Table 2 Biomass allocations of pine stands, not including the main bole, that are potentially available for bioenergy

Stand Foliage/
litter

Branches/
nonmerchantable
wood

Forest
floor

Total
biomass

Comments Citation

Retained
on site

Removed

Bole-only harvest Mg ha−1

Loblolly pine, South Carolina,
20–25 years

18 41 5.3 Preharvest estimate [14]

25 51 76 Topped in place [11]

24 40 64 Delimbing gate [11]

Loblolly pine, Texas,
27 years

7 33 20 77 Topped in place [7]

Loblolly pine, Louisiana 10 37 33 82 Topped in place [7]

Slash pine hybrid, Australia,
29 years

2 27 20 51–74 [65]

Radiata pine, Australia,
37 years

12 39 32 52 [66]

Whole-tree harvest

Loblolly pine, Texas,
27 years

7 33 20 50 20a Topped at deck [7]

Loblolly pine, Louisiana 10 37 33 57 31a Topped in place [7]

Slash pine, Georgia 9 WTH, pine only [73]

Slash pine, Georgia 24 WTH, pine, and
hardwood

[73]

Loblolly pine, GA, LA, MS,
TX, 30–56 years

28 Some stands thinned [64]

Radiata pine, Australia,
37 years

12 32 43 39 [66]

a Estimated
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improvement among tree families [35, 76], indicates that
fertilization requirements could be difficult to generalize.
Foliar N and P critical levels are generally considered 1.2%
and 0.1%, respectively [34]. King et al. [35] found fertilizer
responses to vary greatly between even closely related
families with some showing significant foliar growth
enhancement at foliar N levels well above 1.2%.

Evidence for Effects of Residue Removal on Forest
Productivity

Forest practices that repeatedly remove residues without
replacing the nutrients and organic matter lost to harvesting
have the potential to reduce long-term site productivity. The
classic example for this is the decline in forest productivity

in German forests resulting from forest floor removal,
which demonstrated the importance of the litter layer for
maintaining soil nutrient cycles and fertility [10]. Agricul-
tural studies provide additional evidence that indiscriminate
removal of residues can degrade soil physical, chemical,
and biological properties [39]. Long-term field experiments
also reveal that the importance of residue retention varies
substantially with soil texture and other site characteristics
[72].

Extensive information is available on the effects of
southern pine postharvest site preparation practices includ-
ing residue removal. Studies over the last three decades
show that practices such as windrowing and shear-pile-disk
can displace large quantities of nutrients and organic matter
and have potentially detrimental effects on site productivity
[19, 46, 48]. The relevance of these studies for assessing

Table 3 Nutrient quantities in dried southern yellow pine residue components from three studies [7, 65, 67]

Location/species Foliage Branches Forest floor Noncrop species Weighted composite
(foliage + branches)

Biomass (Mg ha−1)

Louisiana (loblolly) 10 15 33 18 25

Texas (loblolly) 7 11 20 11 18

Australia (slash) 2 23 20 – 25

Australia (radiata) 12 39 32 – 51

N (kg Mg−1)

Louisiana (loblolly) 12 3 10 2 7

Texas (loblolly) 13 3 6 2 7

Australia (slash) 8 2 5 – 3

Australia (radiata) 11 3 15 – 5

P (kg Mg−1)

Louisiana (loblolly) 1.0 0.2 0.3 0.1 0.5

Texas (loblolly) 0.8 0.2 0.2 0.1 0.4

Australia (slash) 0.6 0.2 0.2 – 0.2

Australia (radiata) 1.1 0.3 1.0 – 0.5

K (kg Mg−1)

Louisiana (loblolly) 3.5 1.3 0.7 1.1 2.2

Texas (loblolly) 3.7 1.2 0.5 1.3 2.1

Australia (slash) 2.0 0.7 0.2 – 0.8

Australia (radiata) 4.9 2.0 1.7 – 2.7

Ca (kg Mg−1)

Louisiana (loblolly) 2.1 2.7 6.8 4.9 2.5

Texas (loblolly) 2.2 2.0 5.1 6.0 2.1

Australia (slash) 3.8 3.0 4.2 – 3.0

Australia (radiata) 7.1 3.8 13.5 – 4.6

Mg (kg Mg−1)

Louisiana (loblolly) 1.1 0.7 1.1 0.5 0.8

Texas (loblolly) 1.2 0.7 1.0 0.7 0.9

Australia (slash) 2.0 0.8 1.0 – 0.9

Australia (radiata) – – – – –

Loblolly pine (Pinus taeda L.), radiata pine (Pinus radiata D. Don), slash pine (Pinus elliottii Engelm.)
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residue removal alone is limited, however, due to their con-
founding effects of soil displacement (i.e., removing nutrients
and organic matter) and effects on competing vegetation,
nutrient availability, and soil moisture [12, 48, 49, 55].

Harvest intensity studies (e.g., stem-only vs. whole-tree
harvest) provide better insights into the effects of intensive
residue removals. These studies have shown site produc-
tivity to be generally resilient but reveal that responses vary
greatly across sites [4, 17, 57]. A meta-analysis of studies
across a wide range of sites found no overall effects of
harvesting on soil C and N levels and a trend toward
slightly reduced soil C and N following whole-tree harvest-
ing [31]. However, there was a wide range in responses for
individual studies. Process-level assessments and empirical
organic matter addition/removal studies both suggest a
generally positive relationship between soil organic matter
and forest productivity, but the relationship is complex and
dependent on what site factors are limiting [22, 27]. For
instance, in southern pine stands, soil organic matter has
been linked to productivity and particularly on coarse-
textured soils [12].

The largest study network evaluating the effects of
residue removal and retention on site productivity is the
North American Long-Term Soil Productivity (LTSP)
program. A synthesis of findings for 26 of the oldest LTSP
installations has found no overall effects of biomass
removal on subsequent forest growth over 10 years [56].
They reported that forest floor removal but not residue
removal reduced soil C concentrations but had little effect
on total C mass. Forest floor removal also reduced soil N
availability on some sites. Consistent with the national
findings, LTSP loblolly pine installations in North Carolina
and Louisiana showed no effect of organic matter removal
on pine stand volume after 10 years but reduced extractable
soil P [61]. By contrast, an analysis of LTSP installations
and a similar experiment in the Gulf Coastal Plain of the
southeastern USA (Louisiana, Mississippi, Texas, and
Georgia) showed an 18% average reduction in tree growth
after 7 to 10 years on 15 of 19 blocks when treetops were
also removed [64]. It is important to note that with one
exception these experiments did not include fertilizer
application, which is a common practice in commercial
forest stands on nutrient-limited sites. At the site where N +
P fertilizer was applied to the whole-tree harvest treatment,
productivity was 47% above that in the stem-only harvest
treatment, suggesting that fertilizer may mitigate any
productivity loss due to residue removal at that particular
site and stage of stand development.

Knowledge Gaps

It is generally assumed that less productive sites low in soil
organic matter and nutrient capital are more susceptible to
productivity loss from intensive silvicultural practices [5,
54, 75], which could include intensive biomass removal.
However, additional field evidence is needed to support this
hypothesis. One residue management study across a forest
site fertility gradient in New Zealand showed negative
effects of residue removal on radiata pine growth lasting
more than 4 years only on a sandy site at the low end of the
fertility spectrum [69]. Harvest residues have been shown
to reduce nitrogen leaching on sandy soils under radiata
pine stands [6]. In the Gulf Coastal Plain LTSP study cited
above [64], it was concluded that sites with low P
availability were the most susceptible to intensive residue
removal, although the greatest reductions in productivity
were on sites with the highest site index.

In Denmark, whole-tree harvest of a Norway spruce
(Picea abies L.) stand reduced stand growth on nutrient-
poor sandy soils by up to 18% during the first 4 years, but
the effect was not significant over the following 6 years or
over the 10 years as a whole [51]. Boreal forest productivity
model simulations suggested that growth reductions result-
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ing from whole-tree harvesting would be highest on the
most productive stands [53].

In addition to direct nutrient removal, other factors can
influence tree and site responses to intensive harvesting. A
comparison of sawlog, whole-tree, and complete-tree
(including stumps) harvesting across four pine and decid-
uous forest sites in Tennessee, South Carolina, Florida, and
North Carolina found variable effects on forest growth over
15 years [32]. There was no treatment effect on a mixed
deciduous stand in Tennessee while whole-tree harvest
reduced loblolly pine growth in South Carolina, which was
attributed to reduced N retention and negative effects on
soil physical properties where residues were absent. By
contrast, complete-tree harvest increased forest biomass at
the Florida longleaf pine site, likely the result of reductions
in competing vegetation. Another assessment across 11 US
sites reported greater nutrient removals from whole-tree
than sawlog harvest, with calcium as the nutrient most
susceptible to loss [40]. Lower initial growth rates on two
of three whole-tree harvest sites that included both treat-
ments could not be attributed to nutrient removals but were
likely due to treatment effects on other factors such as
herbaceous competition and microclimate.

One factor influencing the role of residues in sustaining
site productivity is their residence time on the site. Over
80% of residue biomass decomposed over the first 15 years
following whole-tree harvest of a Tennessee mixed oak
forest [33]. In this case, residue retention enhanced foliar
Ca, Mg, and K but had no effect on soil C. Due to their
relatively rapid decomposition, residues may be less
important for site productivity in southern (e.g., warm-
temperate) forests compared to forests in colder climates.
The degree of ground contact also influences residue
decomposition rates. Decomposition of loblolly pine har-
vest residues that were in contact with the ground was 50%
greater than residues without such contact [1]. Residues
remained a net sink of N and P over at least 11 years
following their deposition, although a large portion of K,
Ca, and Mg was released during the initial 5 to 6 years
following harvest.

Evidence from these studies suggests that residue
removal associated with whole-tree harvesting has the
potential to deplete site nutrients and productivity but that
most forest sites examined appear resilient to the practice.
There is little evidence that productivity declines cannot be
corrected. Scandinavian societies have depended on inten-
sive harvesting for decades to provide fuel wood; these
practices provide examples of a scientific and philosophical
approach to sustaining site nutrient capital and productivity
by recycling and replenishing nutrients removed. Studies in
that region show that nutrient removals due to whole-tree
harvesting are often small compared to site reserves but can
deplete soil base cations and other nutrients and reduce

forest productivity on some sites. However, these deple-
tions can also be corrected by identifying and replacing
nutrients using wood ash and fertilizers [3, 30, 70, 74, 75].

Ultimately, the effects of repeated residue removals over
long periods remain poorly documented for forests in the
southern USA, which limits the conclusions that can be
drawn about the sustainability of short-rotation biomass
production systems. Findings from long-term agricultural
experiments, which have repeated residue removals over
decades, demonstrate that sustainability is feasible as long
as limiting site factors are identified and corrected. These
findings are consistent with those from intensive harvest
studies in Scandinavia. One of the few examples of
repeated residue removals in forest systems we reviewed
found that productivity of willow (Salix L.) and hybrid
poplar (Populus alba L.) plantations in central New York
could be sustained over 10 years of annual harvesting when
fertilization and irrigation were used [38]. Although
important questions remain, the weight of evidence from a
range of studies suggests that the logical solution for
sustaining forest productivity under repeated residue re-
moval will be to identify sensitive sites and develop
nutrient replacement regimes that avoid or mitigate defi-
ciencies. This will require both a scientific understanding of
limiting site factors and the flexibility to address them.

Considerations for Implementation of Residue
Collection

Forests in the USA are not the most intensively managed in
the world. Experience in other parts of the world suggests
that increased management intensity will likely require
more sophisticated prescriptions and evaluation [18, 68],
particularly with regards to maintaining nutrient budgets.
Fertilization is expensive and prices for nitrogen have more
than quadrupled in the past few years. Conservative
strategies sacrifice maximum yield, while more aggressive
regimes are costly and can negatively impact water quality
[25]. Stand-level management may need to be better
integrated at landscape scale with greater consideration
given to appropriate rotations and species selection [39,
63]. More detailed stand records may be required to allow
for crop history tracking [27]. However, fertilization costs
to correct nutrient removals could be offset by the revenues
generated from the sale of the residues. In the case of
conventional fertilization, fertilization costs are an invest-
ment offset by the future sale of biomass and affected by
future market uncertainties.

Traditionally, several technological and economic hur-
dles have prevented widespread utilization of forest
biomass for energy in the USA. Energy from biomass
remains a relatively expensive source compared to fossil
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fuels, hydropower, and wind [62]. Biomass accounts for
only 3–4% of the total energy consumption in the USA
mostly in the industrial sector using waste products [24].
The amount of space required for the storage and transport
of biomass chips is three to four times for an energy
equivalent amount of coal or 11–15 times that of oil, and
thus transportation costs are high [24, 28]. It has never been
economically feasible to transport logging residues at great
distances [21]; therefore, wood-derived power seems to
favor small or isolated markets or decentralized facilities.

At some point, technology may improve or markets may
change such that the economic constraints of wood
bioenergy can be overcome. At that time, socioeconomic
factors may dictate the use of harvest residue as biofuel.
Potential negative impacts such as nutrient loss, soil
erosion, and decreased organic content are obvious con-
cerns. However, there are potential benefits as well. For
example, an increased market value for residue could
diminish practices such as “high grading” which create
lower-quality forests [60]. Increasing the profitability of
midrotation thinning operations in pine stands (particularly
from below) and improvement cutting in hardwood stands
may also improve carbon sequestration rates, improve stand
quality, and increase overall volume [29]. Additionally,
improved silvicultural systems may also be developed for
degraded and marginal lands including mined lands [39].

Conclusions

As much as 50 to 85 Mg ha−1 (dry) of harvesting residues
remains on the surface after a harvesting operation on an
industrial southern yellow pine plantation. This material is
comprised of limbs and foliage from the tops of the harvested
trees and material from the previous forest floor. Approxi-
mately 10 to 40 Mg ha−1 dry material (20 to 80 Mg ha−1 wet)
could be collected for biofuel if simultaneously collected
during a conventional harvesting operation with the addition
of a chipper. Current markets classify this material as “hog
fuel” and value it at $16 to $20 Mg−1 for undried material.
Whether this practice is ultimately adopted will depend on
improving the technology that converts these materials to
energy, expanding and developing markets, and changes in
societal perception and values.

One of the environmental costs of utilizing this material
is the removal of nutrients that would otherwise serve as a
nutrient source for future stands. Clearly, it is technologi-
cally feasible to use fertilizers as a means to offset these
losses. Nitrogen and phosphorous are generally the most
limiting and most expensive nutrients for sites in the
southeastern USA. Up to 6.7 kg of nitrogen, 0.5 kg of
phosphorous, and 2.7 kg of potassium may be removed for
each megagram of residue harvested for biofuel. Whether

there is a negative long-term effect from residue removal is
unclear from the results of existing resources, and the
effects are likely site dependent. Responses may be quite
variable depending on the species (or clones) present and
current nutrient status of the site, although more fertile sites
are likely to be more resilient to the practice.

The use of these materials may require greater involve-
ment and monitoring on the part of stand managers to be
sustainable in the long term. Based on currently available
information, it does not seem that there will be a negative
long-term effect from residue removal as long as a forest
floor remains intact. This seems particularly true for fertile
sites and for sites that will receive fertilization.
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